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Thermal Noise in
Dylan F. Williams,

Abstract—This work rigorously treats thermal electromagnetic
noise in Iossy waveguides and develops explicit modal equivalent-
circuit representations for the noise generated by arbitrary pas-
sive networks emlbedded in them. The results show that the
formulations in common use are limited to lossless transmission
media.

I. INTRODUCTION

HERE WE WILL place the theory of electrical noise in

electromagnetic waveguides on firm theoretical ground,
developing explicit expressions for the spectral densities and
the correlations of modal Thevenin-equivalent voltage sources
describing the electrical noise generated by arbitrary passive
circuits embedded in lossy guides.

In 1928, Nyquist [1] explained Johnson’s measurements of
the electrical noise voltage of a resistor [2] by examining the
interaction between the resistor and a lossless transmission line
supporting a single dominant mode of propagation. Nyquist’s
arguments were based on the assumption that the modes

of an electromagnetic resonator form a closed system to
which the secon(d law of thermodynamics may be applied:
maximizing the entropy of this system shows that the average
energy per unit bandwidth of each mode of the resonator
is hf / (ek~/k~ – 1),where ~ is the frequency, k is the
Boltzmann constant, h is the Planck constant, and T is the
absolute temperature of the system. By applying this result to

resonators formed from increasingly long sections of lossless

transmission line, Nyquist was able to determine the power

spectral density of the electromagnetic energy of a single

lossless mode in an infinite transmission line in thermal equi-

librium with its environment. He then examined the interaction

between a resistor and the line; the requirement that the

average power flow between them be balanced in thermal

equilibrium fixed the electromagnetic energy radiated by the

resistor into the ]ossless mode of the line. This determined the

spectral density of the resistor’s Thevenin-equivalent voltage

describing its electromagnetic noise.

Strictly speaking, Nyquist’s Thevenin-equivalent voltage

was not actually a property of the resistor itself, but of the

electromagnetic radiation emitted by the resistor into a mode

of a lossless transmission line. Discussions of Nyquist’s results

are found in [3] and [4]. and in numerous modern quantum-

mechanical treatments of thermal electrical noise,

From Nyquist’s results Schremp [5] developed Thevenin-

equivalent representations for the electromagnetic noise gener-

ated by reciprocal and passive but otherwise arbitrary multiport

networks embedded in lossless transmission lines. Twiss [6]
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extended these results to arbitrary passive multiport networks
embedded in those lines. Bosma [7] discusses their wave
representations.

Nyquist’s arguments cannot be extended directly to lossy
waveguides because, when he applies the second law of
thermodynamics to a waveguide mode, he assumes that it
forms a closed system. In fact, a mode of a lossy waveguide
does not form a closed system, as it is coupled to and dissipated
by the materials composing the guide. Here, we determine

the thermal noise generated by arbitrary passive networks by
considering how thermal energy is transferred from passive
networks embedded in lossless transmission lines, the special
case where the results of Nyquist and Twiss can be applied
directly, to lossy waveguides,

Fig. 1 illustrates the argument. It shows a passive multiport
network at the left embedded in a set of lossless transmission
lines (for clarity only two are shown in the figure). To simplify
the arguments, we will assume that the lossless lines support
only a single propagating mode and that all the other modes
of the lines have decayed away at z = – l;this allows us to

apply in a straightforward manner the results of Twiss [6] to
characterize the noise there. The lossless transmission lines
are connected to the lossy waveguide by a transition that is
composed entirely of lossless materials, begins at z = –1,and
abruptly terminates in the lossy waveguide at z = O. We will
account for all of the modes in the lossy waveguide; by this
full accounting we will eliminate sources of electromagnetic
noise in the transition due to the excitation of high-order
modes in the lossy guide. This and the restriction that the
transition is constructed only of lossless materials will allow

us to treat it in the context of the theory of [8] as truly
lossless and sourceless. The simplest such transition is formed
by continuing the lossless transmission lines to z = O and
abruptly connecting them to the 10SSYguide there.

In what follows, we will use the general waveguide circuit
theory of [8] to examine the flow of the noise from the passive
network of Fig. 1, which can be characterized using the results
of [6], through the lossless and sourceless transition to the
lossy waveguide. This will allow us to develop expressions
for the noise generated by the network to the left of z = O in

the lossy guide, which we will express in terms of the spectral
densities of modal Thevenin-equivalent voltage sources and
their correlations. Since we place no restrictions on the passive
network, we will conclude that the expression is general, valid
for any passive network embedded in the lossy guide.

II. MODAL VOLTAGES AND CURRENTS

We require that the lossless transmission lines and lossy
guide of Fig. 1 be closed, uniform in z, and constructed en-
tirely of materials with isotropic permittivity and permeability.
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Fig. A ~assive but otherwise arbitrarv multiuort network embedded in the
lossless transmission lines connected to a 10SSYwaveguide and its equivalent
circuit.

These restrictions ensure that the electromagnetic eigenvalue

problem is separable and that the lines and guide support

discrete and complete sets of forward and backward modes

[8], [9]; the continuous spectrum of radiation modes supported

by open structures are neglected here. As outlined in the

introduction, we also assume only a single dominant mode

in each of the lossless lines at z = –1.We can now apply

the general waveguide theory of [8], and express the total

transverse electric field Eptn and total transverse magnetic

field HPtn in the nth lossless line with a single modal voltage

‘prl and modal current ~Pn defined by

Eptn(z= –i) = ~ eptn

P

Hpt. (z= –1) = ~ hptn (1)
P

where ept,, and hptn are the transverse fields of the forward

propagating dominant mode and vPom and ZPon are normalizing

factors. We define the modal voltages and currents in the lossy

waveguide in an analogous manner, writing the total transverse

electric field ~wt and magnetic field Hwt there in terms of
the modal voltages vWm and moldal currents iWn as

(2)

where e ~tm and hWtm are the transverse fields of the mth

forward propagating mode of (the 10SSY waveguide, vwo~

and ZWom are normalizing factors, and the sums over m

span the set of all modes in the guide, typically infinite

in number. This assignment of discrete modal voltages and

currents to each mode cannot be made in open guides, which

support in addition a continuous spectrum of radiation modes,

necessitating the restriction here to closed guides.

In accordance with [8] and [10], we place the

restrictions vPon i~om = S%n x h~tn~zdS and

U~O~Z~om = s e~t~ x l&m ~z dS, where * indicates
the complex conjugate, on the normalizing factors vPon, zPon,

vWom, and ZWom. This restriction assures that, when only one

mode is present, the power transmitted across a reference

plane by that mode alone is Re (vPT,i~n) or Re (vWni~m), as
appropriate. If we choose vwo~ to be the integral of ewt~
over a given path in the transverse plane of the 10SSYguide,
then v~m will correspond to the integral of Ewt over that
same path when only the mth mode is present. Likewise, if
we choose iwo~ to be the integral of hWtm around a given
closed path in the transverse plane of the lossy guide, then

i~,m will correspond to the integral of Hwt around that same
path when only the mth mode is present. However, choosing
either vWom or iWom fixes the other. These considerations
also apply in the lossless transmission lines.

Denoting the vectors of voltages Vpn and currents iP~ by

2P
and jp, respectively, the total real power crossing the

reference plane at z = –1 is P(Z = –1) = Re(@p),

where the superscript “t” indicates the Hermitian adjoint
(conjugate transpose). The total real power transfen-ed across
the reference plane at z = O in the lossy guide is

P=Re
(/

E.wt X H:t . z dS
2’=0 )

Defining the elements of the cross-power matrix ~ to be

x= 1
mn —

/

ewtn x h~tm . z dS (4)
%on~;om

we can compactly express (3) as

P = Re (z7,,X V,W). (5)

The diagonal elements of ~ are equal to 1; in the presence of

loss, the off-diagonal terms of ~ will generally differ from O.

III. IMPEDANCE MATRICES AND

THEVENIN-EQUIVALENT SOURCES

We will represent the electromagnetic noise of thermal

origin generated in the passive network of Fig. 1 at z = –1 by
the vector 1P of modal Thevenin-equivalent voltage sources.

The vector 5P is defined by

up = –Zpip + $P (6)

where ~p is the impedance matrix of the passive network
embedded in the lossless transmission lines. The negative sign
in (6) accounts for the fact that .ZP is defined with respect to
currents which enter the passive network, whereas the modal
currents ~p are associated with the forward modes in the
transmission lines.

We will represent the electromagnetic noise of thermal
origin generated in the passive network of Fig. 1 at z = O by
the vector fiW of modal Thevenin-equivalent voltage sources.
The vector ~W is defined by

v=
—w

–~jw + jw (7)
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where ~W is the impedance matrix of the passive network and V. PROPERTIES OF THE LOSSLESS TRANSITION .

the lossless transition embedded in the lossy guide. Again, the We will now use the lossless property of the transition to
negative sign in (7) accounts for the fact that ~W is defined simplify (12), eventually expressing the factors on the right
with respect to currents which enter the lossless transition, involving zP, zll, and zzl in terms of zW and the cross-
whereas the modid currents ~Ware associated with the forward
modes in the lossy guide.

power matrix x. Appendix A shows that the impedance matrix
~~ of a passive and lossless circuit satisfies

We define the impedance matrix of the lossless transition
connecting the embedded network to the lossy guide by x,z~ +Z!x; =0 (13)

k]= [221 [2W1

where -XL is defined in accordance with (4). When we apply

(8) (13) to the impedance matrix of our transition, we obtain the
condition

Because we have accounted for all modes in the problem,

we can speak of this transition as lossless, which explains
the absence of source terms in (8). The negative sign in (8)
accounts for the fact that the modal currents jW are associated
with the forward modes in the Iossy guide, which leave, rather
than enter, the transition.

IV. NOISE CORRELATIONMATRIX

The noise properties of the passive network at z = –1 are

conveniently expressed in the frequency domain by the matrix

0 fit where the overbar indicates the spectral density of the–P–P ‘
quantity below it [1 1]. The nth diagonal element of ~P@ is the

spectral density Ii$~ 12 of Ifipn 12. The ninth element of ~p$
is the spectral density of Opnfi;m. These off-diagonal elements

of @ contain the correlations between the elements of ~P.
Twiss [6] shows that when the passive circuit is in thermal

equilibrium, GPQ; is given by

(9)

This result is obtained directly from Nyquist’s expression for

the spectral density of the Thevenin-equivalent voltage source
that describes the noise of a resistor in a lossless line and
arguments of thermal equilibrium. In what follows, we will
try to develop an expression comparable to (9) for the noise
behavior of the network in the lossy guide at the reference
plane z = O.

We can determine the Thevenin-equivalent voltage sources

~W in terms of their counterparts tP by applying the boundary
condition jW = O in (7) and (8), in which case ~W = gW =

z21~P. Substituting (6) into (8) to eliminate UP and ~P gives
the desired result

jw= Zzl(zp + Z1l)-l%” (lo)

Thus the matrix ~W~~ is

Z +Z1l)-ljp]t= =Z21(ZP + .zll)-11p[z21(_p—w—w

=z21(.ql +zll)-l@[(zp +zll)-l]+zil. (11)

[1
_oo—

00
which is really the four conditions

(14)

Using the condition Z ~ + Zil = O from (15), we can now
Iwrite the term ~p + Zp in (12) as 4P + ~~ = (ZP + ~11) +

(~~ + ~~l). Substitution into (12) gives

+ [Z21(ZP +zll)-lz~l]t}. (16)

Using the condition ~12 + Z:, X+ = O from (15), we can now
write (16) as

G G+ =_2
—w—w .hf,!: _ ~ {Z21(Z, + Z11)-’Z12(X+)-1

+ [Z21(ZP +Z11)-1Z12(F-1]+}. (17)

We can write ~P in terms of ~W by using the fact that
zW is defined by the relation uW = zW (–jW ) when lW
and 1P are set to O. Then equation (6) gives Vp = –@P,
while (8) gives UP = Z i – Z12~W. Combining the two~- l-p
gives iP = (ZP + Zll ~1 ZlziW. Substitution into (8) yields

v = Z21 (Zp + Zll ) z12L0 – z22iw ~ which leads us to
~~duce the expression for ZW in terms of ZP

Zul = Z22 – Z21(ZP +Z11)”1Z12. (18)

This expression can be used to replace the terms Z21 (ZP +

Z11)-1Z12 in (17) with –(ZW – Z22)

~ ~t =2
—w—w .hf/t: -1 {(~~ - ~22)(x+)-1

+ [(ZW – z22)(x+)-llt}. (19)

Now the condition X 2,, + Z~2X+ = O from (15) eliminates
the terms involving z22 in (19), giving the desired result

~w~~ ~ 2 ~hf,:: _ ~ {Zw(x+)-’ + [zw(xP-llt} (’w

Substitution of ~9) into (11) results in This is a concise expression for the modal Thevenin-equivalent
voltage sources describing the noise of a passive circuit

~ O+ =2_ ‘f z’ (z +ZII)-l[ZP +Z;l embedded in the lossy waveguide. Appendix B gives the
—w—w ~hf/kT _ ~ —21 —P Norton-equivalent current and scattering-parameter forms of

“ [(ZP +zll)-lltzL. (12) (20).
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Fig, 2. Extension to multiport network. Only two guides are shown for
clarity.

VI. DISCUSSION

Since we placed no restrictions on the embedded network
other than it be passive and no restriction on the intervening
transmission lines and transition other than that they are
lossless, relation (20) is a very general result that must
be satisfied by any passive network embedded in the lossy
waveguide. There are a number of interesting applications and
special cases.

1) Lossless Networks: Substitution of the lossless condition

(13), derived in Appendix A, into (20) shows that flWO~ = O

for lossless networks.

2) Multiport Networks: Since no restriction was placed on

the lossy waveguide except that it be closed and be constructed

only of isotropic materials, we can replace the single 10SSY

waveguide with multiple 10SSY guides, as illustrated in Fig. 2.

Equation (20) is still applicable, except that ~ is given by the

block-diagonal matrix

~=l?‘2:“”1 ’21)
1.
L

and ~W by the vector

where & and & refer to the source

matrix of the nth guide, respectively.

(22)

vector and cross-power

3) Alternate Form: The general waveguide theory of [8]

determines the symmetry of the impedance matrix of a wave-

guide junction composed only of passive reciprocal materials.

The result is that the impedance matrix of these waveguide

junctions satisfy ~t = ~ Z l?– 1, where superscript “t”indi-

cates the transpose, ~ = diag (~ et~ x htn z dS/vOmZOn)=

dkg [(v& /vo~ )K~] is the diagonal reciprocity matrix, and the

K,, are the reciprocity factors of [ 12] for each mode. Appendix

C shows that these reciprocity factors are related to the cross-

power matrix ~ through (@)-1 = jl- l~t (T1- 1)t. Thus

(20) may be written as

r-l

+ [z.,,w-lx’(w-l)t]t}. (23)

4) Dominant Modes: When the first N modes contain at

least all of the dominant ones and the circuit is embedded in

a length of waveguide sufficiently long to damp out all of the

modes except the dominant ones, then ~W takes the form

(24)

where & is an N x N matrix and ~Wo is a diagonal matrix

containing the characteristic impedances of all but the first N

modes. Now (20) szives.=

h f
–2~wd~;d — [Z Q + (Zw,Q)”t] (25)~hf/kT _ 1 —wd

where &d is the subvector of ~W containing its first N

elements and Q is the upper left-hand N x N submatrix

of (~t )‘1. Equation (23) and Appendix C show that Q =

w- lX: (JV; 1)1”,where ~d and F& are the upper left-hand—d —
N x N submatrices of ~ and JV, respectively. This last
relation is useful when not all of the elements of ~, which is

generally infinite in dimension, are known.

5) Power-Normalized Conductor Representation: The
“conductor” voltages and currents of [13] are linear
transformations of the modal voltages and currents UW and
jW. By analogy with [13] we define the “power-normalized”

conductor voltages IJC and currents ~C by

where gC and ~C are generally infinite in dimension and ~V

and ill, are invertible and satisfy M+ M = ~ this latter—’l —v
restriction ensures that the total power is given by p = &.

Equation (20) becomes [6]

(27)

in this representation, where ~C, the impedance matrix in the

conductor representation, is de ftned by ~C ~ M. Z%,M; 1.

VII. ILLUSTRATION

In low-loss rectangular waveguides the off-diagonal ele-
ments of the cross-power matrix ~ linking the dominant
waveguide mode to other modes in the guide are generally
small except at frequencies where the modes are nearly de-
generate (i.e., when their propagation constants are nearly

equal). At these frequencies the modes may couple and the

field patterns of each of the lossy coupled modes can be

represented to first order as linear combinations of the field

patterns of lossless uncoupled modal solutions [9], [14]. While

this results in large off-diagonal elements of ~, this coupling
phenomena is limited to narrow bands of frequencies above the
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Fig. 3. Asymmetric coupled microstrip lines on a lossless substrate,

‘“r 1.10
—IQ,, I, IQ221

0.3

0.2
lfl _—

6,05 0.1
. ,“.

0.5 1 5 10 40

Frequency (GHz)

Fig. 4. The magnitudes of the elements of the matrix Q for the coupled lines
of Fig. 3. The frequencies where the imaginary parts of ~. and V. cross and
the quantity I~C – T. I/@. reaches a broad minimum define the frequency
range labeled ~. x y= in the figure.

usual upper frequency limit of the guide, and so may usually

be ignored in practice,

However, large off-diagonal elements of ~ linking dom-
inant modes often do occur in multiconductor transmission
lines over broad ranges of useful frequencies. The lossy
asymmetric coupled microstrip lines of Fig. 3 illustrate this
phenomena. This transmission line structure supports two
quasi-TEM dominant modes, commonly referred to as the c
and x modes, which correspond to the even and the odd mode
of the symmetric case, respectively. The propagation constants
of the, c and 7r mlodes of the structure of Fig. 3 become close
in the frequency range 300 MHz–5 GHz. While the low-loss
assumptions of [9] and [14] are not met by this high-loss guide,
our calculations based on the full-wave method of Heinrich
[15] show that this near degeneracy is accompanied by large
off-diagonal elements of ~.

Since the c and r modes are the dominant ones the
impedance of a termination embedded in a sufficiently long
length of line will take the form (24), where & is the 2 x 2
c-modehr-mode impedance matrix. We can calculate the 2 x 2

matrix ijwdj~d of c-mode and n-mode Thevenin-equivalent

sources from ~U,d and Q using (25).
Fig. 4 plots magnitudes of the elements of the matrix Q

calculated with the method of [15]. It shows that Q differs
significantly from the identity matrix in the region where the
modes couple; the conventional formulation, in which Q is

absent in the expression relating &#~d to ~wd,, Will fail

there.

While beyond’ the scope of this work, [13] shows for the

case of Fig. 3 that the expression for QCd~~d, the Thevenin-
equivalent voltage sources in the power-normalized dominant-
mode conductor representation, assumes the conventional form
2h~/(ehf/~T – 1) [~cd + &], where & is the impedance

matrix in that representation.

VIII. CONCLUSION

We have developed a rigorous representation for the thermal
electromagnetic noise of circuits embedded in lossy waveg-
uides based on modal Thevenin-equivalent voltage sources
and derived explicit expressions describing the noise generated
by passive networks. The results form a firm foundation for
the theory of electrical noise in lossy waveguides and show
that the spectral densities of the modal Thevenin-equivalent
voltage sources depend on the cross-power matrix & a result

that cannot be predicted directly from Nyquist’s theory. We
illustrated the results with a practical example in which the

off-diagonal elements of x are large and the conventional
formulation fails.

APPENDIX A

LOSSLESS CONDITION

The net power P entering a lossless circuit with impedance
matrix ~ is

P = Re (~t~g)

=Re (itX ZZ)

=+(z+xzz +[i+xzi]”).; (28)

The quantity itX Z i is a scalar and so is equal to its transpose.

Therefore, (28) is

P = +(itxz 2+ Jztxti)

= +i+(xz+ Z+x+)i. (29)

Since the circuit is lossless, P must equal zero for all current
vectors ~, which implies that lossless networks satisfy the
relation ~ ~ + ~+~+ = O.

APPENDIX B

OTHER REPRESENTATIONS OF THERMAL NOISE

The Norton-equivalent current sources ~W, defined analo-
gously to the Thevenin-equivalent voltage sources, satisfy

—jw =Yu –iw—w—w (30)

– 1 is the admittance matrix of the circuit. Wewhere ~W = ~W
can relate ~W to i& by

~w =iwlgw=o = z;liw (31)

so, using (20)

~ =Z-l’ij it (z-l)+
-w -w —w —w—w —w

=2
eh.f/~~ _ ~ [~w~-’ + (~WX-’)t].

(32)

We can also express (20) in terms of the pseudo-wave
parameters of [8] in the lossy guide. The pseudo-waves
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correspond to traveling waves when their reference impedance
is set equal to the characteristic impedance of the mode. They

correspond to the waves conventionally used in microwave
design when their reference impedance is set real. The vectors
of forward pseudo-waves CLWand backward pseudo-waves bW
with reference impedances Z~ef are related to the voltages

and currents by [8]

1U(’V + Z.efjwa =T__w—w ) (33)

and

lW = *Q(!2W – Zrefiw) (34)

where the diagonal matrices &f and U are defined by

z—ref = diag (Z~ef) and

“=diaglo=l(35)

The Thevenirl-equivalent voltage is

The forward wave sources &W and pseudo-wave reflection
coefficient matrix I’W are defined by [8]

a—w= Cwbw + iiu, (37)

which implies that

&w = ;(l-rw)ujw. (38)

NOW we can express &W& in terms of $WC~

Fig. 5. Abrupt connection of lossless transmission line to a 10SSYwaveguide.

APPENDIX C
RELATIONS BETWEEN X AND ~

Fig. 5 shows the abrupt connection of a lossless line to
a lossy waveguide. Tne transition is again defined to begin
at z = – 1 and to terminate at z = O and contains only
lossless and reciprocal materials. If we account for all of
the modes at the two reference planes at z = – 1 and
~ = 0, we can say, from the preceding arguments, that its

impedance matrix satisfies (15). Since the materials comprising
the transition are reciprocal, we can also apply the condition
~t = WZW-l of [8] and [12], where Y ~ diag(~ e~t~ x_——

hw,m z dS/vwOmiwOm), to its impedance matrix (8). The
result is

Ea]‘k4[221 bJ-ll
‘[ z—11 Z,, W-l

vv~21 WZ,, W-l1 (43)

where ~ is the reciprocity matrix for the lossy waveguide
(the reciprocity matrix for the lossless guide is the identity
matrix [12]).

LQL = +(1 – L’W)LIQW+(I – rw)+. (39) Now, combing the lower-left conditions

Substituting (20) into (39) gives
gives

& = –x Z,l

~ut—:
2 ,hf/~: -1 ‘1 - ~VJ)~{~W(~+)-’

– –x(w-l&).—w—w—
—

+ [ZW(X+)-ll+}LI+(l – L)+. (40) The upper-right condition of (15) gives

of (15) and (43)

(44)

Z;2 = –X”z;l (45)
The relation ~W = (1 -U-l~WQ)-’(l+U-l~WU)zT.f from
Appendix E of [8] shows that (40) is while the upper-right condition of (43) gives

6 ~t—1
& == W+z;l. (46)

— ‘2 .hf,!: _ ~[(1 -rw)A+(l +L)+—w—w—
Substitution of these two results into (44) gives

+ (1 +L’W)A(l – L)+l (41)
Wtz;l = –x~-lx*z;l. (47)

Since equation (47) is true for the connection of any lossless

~ - Zrefu(x+)-lLJt. (42)
guide to the lossy guide, we must in general have

w+ = –xw–1~” (48)

As explained in the text, these results are also applicable to
multiport networks. In that case, the pseudo-wave scattering-

which in turn implies

parameter matrix replaces ~W in (41). (~t)-1 = _w-’~’(wt)-l — (49)

where
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