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Thermal Noise in Lossy Waveguides

Dylan F. Williams, Senior Member, IEEE

Abstract—This work rigorously treats thermal electromagnetic
noise in lossy waveguides and develops explicit modal equivalent-
circuit representations for the noise generated by arbitrary pas-
sive networks embedded in them. The results show that the
formulations in common use are limited to lossless transmission
media,

I. INTRODUCTION

ERE WE WILL place the theory of electrical noise in

electromagnetic waveguides on firm theoretical ground,
developing explicit expressions for the spectral densities and
the correlations of modal Thevenin-equivalent voltage sources
describing the electrical noise generated by arbitrary passive
circuits embedded in lossy guides.

In 1928, Nyquist [1] explained Johnson’s measurements of
the electrical noise voltage of a resistor [2] by examining the
interaction between the resistor and a lossless transmission line
supporting a single dominant mode of propagation. Nyquist’s
arguments were based on the assumption that the modes
of an electromagnetic resonator form a closed system to
which the second law of thermodynamics may be applied:
maximizing the entropy of this system shows that the average
energy per unit bandwidth of each mode of the resonator
is hf/(ehf/¥T — 1), where f is the frequency, % is the
Boltzmann constant, A is the Planck constant, and T is the
absolute temperature of the system. By applying this result to
resonators formed from increasingly long sections of lossless
transmission line, Nyquist was able to determine the power
spectral density of the electromagnetic energy of a single
lossless mode in an infinite transmission line in thermal equi-
librium with its environment. He then examined the interaction
between a resistor and the line; the requirement that the
average power flow between them be balanced in thermal
equilibrium fixed the electromagnetic energy radiated by the
resistor into the lossless mode of the line. This determined the
spectral density of the resistor’s Thevenin-equivalent voltage
describing its electromagnetic noise.

Strictly speaking, Nyquist’s Thevenin-equivalent voltage
was not actually a property of the resistor itself, but of the
electromagnetic radiation emitted by the resistor into a mode
of a lossless transmission line. Discussions of Nyquist's results
are found in [3] and [4]. and in numerous modern quantum-
mechanical treatments of thermal electrical noise.

From Nyquist’s results Schremp [5] developed Thevenin-
equivalent representations for the electromagnetic noise gener-
ated by reciprocal and passive but otherwise arbitrary multiport
networks embedded in lossless transmission lines. Twiss [6]
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extended these results to arbitrary passive multiport networks
embedded in those lines. Bosma [7] discusses their wave
representations.

Nyquist’s arguments cannot be extended directly to lossy
waveguides because, when he applies the second law of
thermodynamics to a waveguide mode, he assumes that it
forms a closed system. In fact, a mode of a lossy waveguide
does not form a closed system, as it is coupled to and dissipated
by the materials composing the guide. Here, we determine
the thermal noise generated by arbitrary passive networks by
considering how thermal energy is transferred from passive
networks embedded in lossless transmission lines. the special
case where the results of Nyquist and Twiss can be applied
directly, to lossy waveguides.

Fig. 1 illustrates the argument. It shows a passive multiport
network at the left embedded in a set of lossless transmission
lines (for clarity only two are shown in the figure). To simplify
the arguments, we will assume that the lossless lines support
only a single propagating mode and that all the other modes
of the lines have decayed away at z = —I; this allows us to
apply in a straightforward manner the results of Twiss [6] to
characterize the noise there. The lossless transmission lines
are connected to the lossy waveguide by a transition that is
composed entirely of lossless materials, begins at z = —[, and
abruptly terminates in the lossy waveguide at z = 0. We will
account for all of the modes in the lossy waveguide; by this
full accounting we will eliminate sources of electromagnetic
noise in the transition due to the excitation of high-order
modes in the lossy guide. This and the restriction that the
transition is constructed only of lossless materials will allow
us to treat it in the context of the theory of [8] as truly
lossless and sourceless. The simplest such transition is formed
by continuing the lossless transmission lines to z = 0 and
abruptly connecting them to the lossy guide there.

In what follows, we will use the general waveguide circuit
theory of [8] to examine the flow of the noise from the passive
network of Fig. 1, which can be characterized using the results
of [6], through the lossless and sourceless transition to the
lossy waveguide. This will allow us to develop expressions
for the noise generated by the network to the left of z = 0 in
the lossy guide, which we will express in terms of the spectral
densities of modal Thevenin-equivalent voltage sources and
their correlations. Since we place no restrictions on the passive
network, we will conclude that the expression is general, valid
for any passive network embedded in the lossy guide.

II. MoDAL VOLTAGES AND CURRENTS

We require that the lossless transmission lines and lossy
guide of Fig. 1 be closed, uniform in 2, and constructed en-
tirely of materials with isotropic permittivity and permeability.
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Fig. 1. A passive but otherwise arbitrary multiport network embedded in the
lossless transmission lines connected to a lossy waveguide and its equivalent
circuit.

These restrictions ensure that the electromagnetic eigenvalue
problem is separable and that the lines and guide support
discrete and complete sets of forward and backward modes
[8], [9]; the continuous spectrum of radiation modes supported
by open structures are neglected here. As outlined in the
introduction, we also assume only a single dominant mode
in each of the lossless lines at z = —I. We can now apply
the general waveguide theory of [8], and express the total
transverse electric field E,:, and total transverse magnetic
field H ., in the nth lossless line with a single modal voltage
Upn and modal current 4,, defined by

Upn
Eptn (Z = “l) =2 Eptn
Upon
lpn
Hptn(zz_l) = .p hptn e))
1pOn

where e, and h,y, are the transverse ficlds of the forward
propagating dominant mode and vp0,, and 1,9, are normalizing
factors. We define the modal voltages and currents in the lossy
waveguide in an analogous manner, writing the total transverse
electric field E,,; and magnetic field H,,; there in terms of
the modal voltages v, and modal currents z,,,, as

o

Eu(z=0)= Yy —om

_/ Vwom
m=1

(o)

Hoyy(z=0)= 3 2™ by @

‘g
el wim

€wtm

where €., and h..,, are the transverse fields of the mth
forward propagating mode of the lossy waveguide, vyom
and 4,0, are normalizing factors, and the sums over m
span the set of all modes in the guide, typically infinite
in number. This assignment of discrete modal voltages and
currents to each mode cannot be made in open guides, which
support in addition a continuous spectrum of radiation modes,
necessitating the restriction here to closed guides.

In accordance with [8] and [10], we place the
restrictions  Uponing, = J €ptn X hp,, - 2dS and
V0mbiom = | €uwtm X Py - 2dS,  where indicates

the complex conjugate, on the normalizing factors v,on, %p0n,
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Vewom, and 2,,0m. This restriction assures that, when only one
mode is present, the power transmitted across a reference
plane by that mode alone is Re (vpniy,) Of Re (Vymi, ). as
appropriate. If we choose v,0m to be the integral of eyim
over a given path in the transverse plane of the lossy guide,
then v, will correspond to the integral of E.,, over that
same path when only the mth mode is present. Likewise, if
we choose 7,0, to be the integral of A, around a given
closed path in the transverse plane of the lossy guide, then
Twm Will correspond to the integral of H,; around that same
path when only the mth mode is present. However, choosing
either v,0m OF 440, fXes the other. These considerations
also apply in the lossless transmission lines.

Denoting the vectors of voltages v,, and currents ¢y, by
v, and i, respectively, the total real power crossing the
reference plane at z = —| is P(z = =) = Re(g';yp),
where the superscript “4” indicates the Hermitian adjoint
(conjugate transpose). The total real power transferred across
the reference plane at z = 0 in the lossy guide is

P:Re( E,, xH;t-zdS>
Z=0

oo

" v
=Re / s €win
1 Vwon
e . %*
2,
< AN ™ Ry | - 2dS|. (3)
—1 LwOm

Defining the elements of the cross-power matrix X to be

1

Xopn = / Cwtn X By 2dS )

sk
Vwinlywom

we can compactly express (3) as
P=Re(i{Xuv,). )

The diagonal elements of X are equal to 1; in the presence of
loss, the off-diagonal terms of X will generally differ from O.

1II. IMPEDANCE MATRICES AND
THEVENIN-EQUIVALENT SOURCES

We will represent the electromagnetic noise of thermal
origin generated in the passive network of Fig. 1 at z = —[ by
the vector ¢, of modal Thevenin-equivalent voltage sources.

P
The vector 9., is defined by

P
Uy = =Zyh, + 1, (6)

where Z,, is the impedance matrix of the passive network
embedded in the lossless transmission lines. The negative sign
in (6) accounts for the fact that Z » is defined with respect to
currents which enter the passive network, whereas the modal
currents g'p are associated with the forward modes in the
transmission lines.

We will represent the electromagnetic noise of thermal
origin generated in the passive network of Fig. 1 at 2 = 0 by
the vector ©,, of modal Thevenin-equivalent voltage sources.
The vector v,, is defined by

Uy = _szw + —@w N



WILLIAMS: THERMAL NOISE IN LOSSY WAVEGUIDES

where Z,, is the impedance matrix of the passive network and
the lossless transition embedded in the lossy guide. Again, the
negative sign in (7) accounts for the fact that Z,, is defined
with respect to currents which enter the lossless transition,
whereas the modal currents 2, are associated with the forward
modes in the lossy guide.

We define the impedance matrix of the lossless transition
connecting the embedded network to the lossy guide by

Y| _ |4 £ i
w]=[Z Zallh ] ®

Because we have accounted for all modes in the problem,
we can speak of this transition as lossless, which explains
the absence of source terms in (8). The negative sign in (8)
accounts for the fact that the modal currents i, are associated
with the forward modes in the lossy guide, which leave, rather
than enter, the transition.

IV. NOISE CORRELATION MATRIX

The noise properties of the passive network at z = —[ are

conveniently expressed in the frequency domain by the matrix
ﬁpﬁ};, where the overbar indicates the spectral density of the
quantity below it [11]. The nth diagonal element of _Qpﬁ; is the

spectral density |9ipn|? Of |9pn|2. The nmth element of 9,0}

is the spectral density of Op, 0y, These off-diagonal elements

of QPQ; contain the correlations between the elements of ©,,.

Twiss [6] shows that when the passive circuit is in thermal
f

equilibrium, 9,9, is given by
oot T
QPQP—Zehf/kT_]_ [_Z.p+Zp] (9)

This result is obtained directly from Nyquist’s expression for
the spectral density of the Thevenin-equivalent voltage source
that describes the noise of a resistor in a lossless line and
arguments of thermal equilibrium. In what follows, we will
try to develop an expression comparable to (9) for the noise
behavior of the network in the lossy guide at the reference
plane z = O.

We can determine the Thevenin-equivalent voltage sources
,, in terms of their counterparts o, by applying the boundary
condition ¢, = 0 in (7) and (8), in which case ¢, = v, =
Zy1i,,- Substituting (6) into (8) to eliminate v, and i, gives
the desired result

Uy = Zon(Z, + Zn) '8

p*

(10)

Thus the matrix @, 9 is

D0 = Z91(Zy + Z11) 10,201 (Z, + Z11) 5, ]
=245(2, + Zyy) "t 0,00[(2, + Zyy)" 1t zZh,.

Substitution of (9) into (11) results in

hf -
GhF/RT _ 1 Zoy(Zy+ Z11)7 (2, + Z}:]

(2, + Z,)7Y 2.

D0, =2

12)
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V. PROPERTIES OF THE LOSSLESS TRANSITION .

We will now use the lossless property of the transition to
simplify (12), eventually expressing the factors on the right
involving Zp, Z,,, and Z,, in terms of Z,, and the cross-
power matrix X . Appendix A shows that the impedance matrix
Z; of a passive and lossless circuit satisfies

X Z,+2 X5 =0 (13)

where X ; is defined in accordance with (4). When we apply
(13) to the impedance matrix of our transition, we obtain the

condition
[1 onn zm%[z; z*lHl 0]
0 X Z21 Z22 _Z._]_z Zzz 0 :KT
_ [0 0]
0 0
which is really the four conditions

2+ 2} Z,+2Z3XT ] _[o o (15)
ﬂZl +Z12 ﬂzz'l’Zzz_X_T - 6 0]

14

Using the condition Z n + ZL = 0 from (15), we can now

write the term Z,, + Z,, in (12) as Z,, + _Z_I, =(Z,+2Z1)+

( Z;F] + Z;l). Substitution into (12) gives

P hf -
8,0, =2 RIRT 1 {Z1(Z, + Z11) 7" 24,

+[Za1(Z, +Zy,)7 2L} (16)

Using the condition Z;, —|-_Z_J2r1KJr = 0 from (15), we can now
write (16) as

- hf _ _
Wil =—2 SRFJRT — ] 1Zan(Z, + Z11) 1Z(XNH!

|2

+[Za1(Z, + Z11) " Zyp(XH T amn

We can write Z,, in terms of Z,, by using the fact that
Z,, is defined by the relation v, = Z,(-3%,) when 0,
and 9, are set to 0. Then equation (6) gives v, = —Z_pg'p,

while (8) gives Y, = leip — 4194, Combining the two
gives i, = (Z, + Z,,)" ' Z,,i,,. Substitution into (8) yields
Vy = Zoy(Z, + Z11) ' Z )98, — Zot,,» which leads us to

deduce the expression for Z,, in terms of Z, »

Zy =23~ Z(Zy+ Z11) L1 (18)

This expression can be used to replace the terms Z,,(Z, +
Z11) 1 Zyy in (17) with —(Z,, — Z3,)

Py hf -
8,8, =2 chizer =7 (Zw ~ Zap)( X

+[(Zy — Za)(XH TS (19)

Now the condition X Z,5 + Z §2X T = 0 from (15) eliminates
the terms involving Z,, in (19), giving the desired result

— h - -

By =2 W {Z,(XN™! + 12, &XD7') 0
This is a concise expression for the modal Thevenin-equivalent
voltage sources describing the noise of a passive circuit
embedded in the lossy waveguide. Appendix B gives the
Norton-equivalent current and scattering-parameter forms of
(20).
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Fig. 2. Extension to multiport network. Only two guides are shown for
clarity.

VI. DISCUSSION

Since we placed no restrictions on the embedded network
other than it be passive and no restriction on the intervening
transmission lines and transition other than that they are
lossless, relation (20) is a very general result that must
be satisfied by any passive network embedded in the lossy
waveguide. There are a number of interesting applications and
special cases.

1) Lossless Networks:
(13), derived in Appendix A, into (20) shows that 9,0
for lossless networks.

2) Multiport Networks: Since no restriction was placed on
the lossy waveguide except that it be closed and be constructed
only of isotropic materials, we can replace the single lossy
waveguide with multiple lossy guides, as illustrated in Fig. 2.
Equation (20) is still applicable, except that X is given by the
block-diagonal matrix

Substitution of the lossless condition
T 0
W

X, 0
X=10 X, 1)
and 7, by the vector
le
D, = |Luw2 (22)

where ©¢,,,, and X, refer to the source vector and cross-power
matrix of the nth guide, respectively.

3) Alternate Form: The general waveguide theory of [8]
determines the symmetry of the impedance matrix of a wave-
guide junction composed only of passive reciprocal materials.
The result is that the impedance matrix of these waveguide
junctions satisfy Z' = W Z W', where superscript “¢” indi-
cates the transpose, W = diag ([ et X P - 2dS/vonion) =
diag [(v},,/von ) K] is the diagonal reciprocity matrix, and the
K, are the reciprocity factors of [12] for each mode. Appendix
C shows that these reciprocity factors are related to the cross-
power matrix X through (X")~! = WX (W ! Thus
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(20) may be written as

hf _
;Z?7EET__35{2ZwIii

+Z WX (W

1.)?(&71)T
O

4) Dominant Modes: When the first N modes contain at
least all of the dominant ones and the circuit is embedded in
a length of waveguide sufficiently long to damp out all of the
modes except the dominant ones, then Z,, takes the form

. de 0
Zw B { 0 Zw()}

(23)

24

where Z,,; 1s an N x N matrix and Z,,, is a diagonal matrix
containing the characteristic impedances of all but the first N
modes. Now (20) gives

hf

i Zwa® + (Z0aQ)T] (25)

de@i}d =2
where 1,,, is the subvector of ¢, containing its first N
elements and () is the upper left-hand N x N submatrix
of (X")~1. Equation (23) and Appendix C show that Q =
Wt XL(W YT, where X, and W, are the upper left-hand
N x N submatrices of X and W, respectively. This last
relation is useful when not all of the elements of X, which is
generally infinite in dimension, are known.

5)  Power-Normalized  Conductor  Representation: The
“conductor” voltages and currents of [13] are linear
transformations of the modal voltages and currents v,, and
i, By analogy with [13] we define the “power-normalized”
conductor voltages v, and currents ¢, by

v. =M, v

=C =W

i, =M

=12

(26)

where v, and 7, are generally infinite in dimension and M,
and M, are invertible and satisfy M ZM_ » = X: this latter
restriction ensures that the total power is given by p = fcfyc.
Equation (20) becomes [6]

/
R

¥
Ve = ehf/kT?l[Zc_l-ZC]

\@>

@7

in this representation, where Z_, the impedance matrix in the
conductor representation, is defined by 2, =M 2, M ;1.

VII. ILLUSTRATION

In low-loss rectangular waveguides the off-diagonal ele-
ments of the cross-power matrix X linking the dominant
waveguide mode to other modes in the guide are generally
small except at frequencies where the modes are nearly de-
generate (i.e., when their propagation constants are nearly
equal). At these frequencies the modes may couple and the
field patterns of each of the lossy coupled modes can be
represented to first order as linear combinations of the field
patterns of lossless uncoupled modal solutions [9], [14]. While
this results in large off-diagonal elements of X, this coupling
phenomena is limited to narrow bands of frequencies above the
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Fig. 3. Asymmetric coupled microstrip lines on a lossless substrate.
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Fig. 4. The magnitudes of the elements of the matrix ¢ for the coupled lines
of Fig. 3. The frequencies where the imaginary parts of 7. and ~, cross and
the quantity |v. — vx|/Bo reaches a broad minimum define the frequency
range labeled v, = v in the figure.

usual upper frequency limit of the guide, and so may usually
be ignored in practice.

However, large off-diagonal elements of X linking dom-
inant modes often do oceur in multiconductor transmission
lines over broad ranges of useful frequencies. The lossy
asymmetric coupled microstrip lines of Fig. 3 illustrate this
phenomena. This transmission line structure supports two
quasi-TEM dominant modes, commonly referred to as the ¢
and 7 modes, which correspond to the even and the odd mode
of the symmetric case, respectively. The propagation constants
of the ¢ and 7 modes of the structure of Fig. 3 become close
in the frequency range 300 MHz-5 GHz. While the low-loss
assumptions of [9] and [14] are not met by this high-loss guide,
our calculations based on the full-wave method of Heinrich
[15] show that this near degeneracy is accompanied by large
off-diagonal elements of X.

Since the ¢ and 7© modes are the dominant ones the
impedance of a termination embedded in a sufficiently long
length of line will take the form (24), where Z, , is the 2 x 2
c-mode/m-mode impedance matrix. We can calculate the 2 x 2

matrix de@; 4 of c-mode and w-mode Thevenin-equivalent
sources from Z,,; and () using (25).

Fig. 4 plots magnitudes of the elements of the matrix ¢}
calculated with the method of [15]. It shows that () differs
significantly from the identity matrix in the region where the
modes couple; the conventional formulation, in which @ is
absent in the expression relating deﬁju 4 10 Zoyq, will fail
there.
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While beyond the scope of this work, [13] shows for the

case of Fig. 3 that the expression for ch@‘;d, the Thevenin-
equivalent voltage sources in the power-normalized dominant-
mode conductor representation, assumes the conventional form
2hf/(eM/*T —1)[Z,4 + Z1 ), where Z_; is the impedance
matrix in that representation.

VIII. CONCLUSION

We have developed a rigorous representation for the thermal
electromagnetic noise of circuits embedded in lossy waveg-
uides based on modal Thevenin-equivalent voltage sources
and derived explicit expressions describirig the noise generated
by passive networks. The results form a firm foundation for
the theory of electrical noise in lossy waveguides and show
that the spectral densities of the modal Thevenin-equivalent
voltage sources depend on the cross-power matrix X, a result

that cannot be predicted directly from Nyquist’s theory. We

illustrated the results with a practical example in which the
off-diagonal elements of X are large and the conventional
formulation fails.

APPENDIX A
LOSSLESS CONDITION

The net power P entering a lossless circuit with impedance
matrix Z is

P =Re(i'Xv)
= Re (ﬁX VA i)
(28)

The quantity i* X Z i is a scalar and so is equal to its transpose.
Therefore, (28) is

X Zi+
f(XZ+ (29)

Since the circuit is lossless, P must equal zero for all current
vectors g, which implies that lossless networks satisfy-the
relation X Z + ZTX' = 0.

APPENDIX B
OTHER REPRESENTATIONS OF THERMAL NOISE

~

The Norton-equivalent current sources 2,,, defined analo-
gously to the Thevenin-equivalent voltage sources, satisfy

—hy =Y Uy — by (30)
where Y, = Z ;1 is the admittance matrix of the circuit. We
can relate z,, to 9, by

by Ziyle, =0 = Zy'y, 31)
0, using (20)
i, = 20,00, (251)!
hf -1 —15t
=2 [Y,X7" + (XX (32

ehf/RT _ |

We can also express (20) in terms of the pseudo-wave
parameters of [8] in the lossy guide. The pseudo-waves
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correspond to traveling waves when their reference impedance
is set equal to the characteristic impedance of the mode. They
correspond to the waves conventionally used in microwave
design when their reference impedance is set real. The vectors
of forward pseudo-waves a,, and backward pseudo-waves b,,,
with reference impedances Z res are related to the Voltages
and currents by [8]

%Q(U +Z7‘efz ) (33)
and

= 35UV = Zye o) (34)

where the diagonal matrices Z,.; and U are defined by
Z,c; = diag(Z];) and

Re (Z1 ;)
n ref
U = diag | Inl Ve (33)
Yon sZref\
The Thevenin-equivalent voltage is
U == Uy |3 =0
=U" 1(,w+b ), =b,
=2U! wlngéw- (36)

The forward wave sources &, and pseudo-wave reflection
coefficient matrix I, are defined by [8]

a, =L,b, +a, (37
which implies that
= (1 =Ty )U Ay, (38)
Now we can express &,, aT in terms of m—
a,a}, = 31 -0, )U8,8,U' 1 -L,)N  (39)
Substituting (20) into (39) gives
Gl = e (L= LU {Z,(X)
+[2,(xXH TN -T,)" (40)
The relation Z,, = (1-U'T,U)~*(1+U 'L, U)Z,,; from
Appendix E of [8] shows that (40) is
4], = % GT/;fo—_q[(l -L,)A'(1+L,)"
+(1+ L)AL -L,)"] (1)
where
A= 7,07 42)

As explained in the text, these results are also applicable to
multiport networks. In that case, the pseudo-wave scattering-
parameter matrix replaces L, in (41).

—U
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Fig. 5. Abrupt connection of lossless transmission line to a lossy waveguide.

APPENDIX C
RELATIONS BETWEEN X AND W

Fig. 5 shows the abrupt connection of a lossless line to
a lossy waveguide. The transition is again defined to begin
at z = —/[ and to terminate at 2 = O and contains only
lossless and reciprocal materials. If we account for all of
the modes at the two reference planes at z = —[ and

= 0, we can say, from the preceding arguments, that its
impedance matrix satisfies (15). Since the materials comprising
the transition are reciprocal, we can also apply the condition
Z' =W ZW™" of [8] and [12], where W = diag ([ €wtm X
Rtm - 2 dS/Vwomiwom ), to its impedance matrix (8). The

result is

5 51 2l 26t
L1y Ly 0 W\ |Zy Zyp|(0 W

Z,, Wt }

(43)

_[ 2n
WZy WZ,W™

where W is the reciprocity matrix for the lossy waveguide
(the reciprocity matrix for the lossless guide is the identity
matrix [12]).

Now, combing the lower-left conditions of (15) and (43)
gives

112 =—-XZyn
=-X(W'Z}y). (44)
The upper-right condition of (15) gives
Zi,=—-X"27% (45)
while the upper-right condition of (43) gives
AR AVASS (46)
Substitution of these two results into (44) gives
Wizy = -XW 'X"Z3, 47)

Since equation (47) is true for the connection of any lossless
guide to the lossy guide, we must in general have

Wh= -XWw'x* (48)

which in turn implies

(xH = -wixtwh

(49)
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